Kinetic resolution of a tryptophan-radical intermediate in the reaction cycle of Paracoccus denitrificans cytochrome c oxidase.

نویسندگان

  • Frank G M Wiertz
  • Oliver-Matthias H Richter
  • Bernd Ludwig
  • Simon de Vries
چکیده

The catalytic mechanism, electron transfer coupled to proton pumping, of heme-copper oxidases is not yet fully understood. Microsecond freeze-hyperquenching single turnover experiments were carried out with fully reduced cytochrome aa(3) reacting with O(2) between 83 micros and 6 ms. Trapped intermediates were analyzed by low temperature UV-visible, X-band, and Q-band EPR spectroscopy, enabling determination of the oxidation-reduction kinetics of Cu(A), heme a, heme a(3), and of a recently detected tryptophan radical (Wiertz, F. G. M., Richter, O. M. H., Cherepanov, A. V., MacMillan, F., Ludwig, B., and de Vries, S. (2004) FEBS Lett. 575, 127-130). Cu(B) and heme a(3) were EPR silent during all stages of the reaction. Cu(A) and heme a are in electronic equilibrium acting as a redox pair. The reduction potential of Cu(A) is 4.5 mV lower than that of heme a. Both redox groups are oxidized in two phases with apparent half-lives of 57 micros and 1.2 ms together donating a single electron to the binuclear center in each phase. The formation of the heme a(3) oxoferryl species P(R) (maxima at 430 nm and 606 nm) was completed in approximately 130 micros, similar to the first oxidation phase of Cu(A) and heme a. The intermediate F (absorbance maximum at 571 nm) is formed from P(R) and decays to a hitherto undetected intermediate named F(W)(*). F(W)(*) harbors a tryptophan radical, identified by Q-band EPR spectroscopy as the tryptophan neutral radical of the strictly conserved Trp-272 (Trp-272(*)). The Trp-272(*) populates to 4-5% due to its relatively low rate of formation (t((1/2)) = 1.2 ms) and rapid rate of breakdown (t((1/2)) = 60 micros), which represents electron transfer from Cu(A)/heme a to Trp-272(*). The formation of the Trp-272(*) constitutes the major rate-determining step of the catalytic cycle. Our findings show that Trp-272 is a redox-active residue and is in this respect on an equal par to the metallocenters of the cytochrome c oxidase. Trp-272 is the direct reductant either to the heme a(3) oxoferryl species or to Cu (2+)(B). The potential role of Trp-272 in proton pumping is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An oxo-ferryl tryptophan radical catalytic intermediate in cytochrome c and quinol oxidases trapped by microsecond freeze-hyperquenching (MHQ).

The pre-steady state reaction kinetics of the reduction of molecular oxygen catalyzed by fully reduced cytochrome oxidase from Escherichia coli and Paracoccus denitrificans were studied using the newly developed microsecond freeze-hyperquenching mixing-and-sampling technique. Reaction samples are prepared 60 and 200 micros after direct mixing of dioxygen with enzyme. Analysis of the reaction sa...

متن کامل

Interconversions of P and F intermediates of cytochrome c oxidase from Paracoccus denitrificans.

Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain. This redox-driven proton pump catalyzes the four-electron reduction of molecular oxygen to water, one of the most fundamental processes in biology. Elucidation of the intermediate structures in the catalytic cycle is crucial for understanding both the mechanism of oxygen reduction and its coupling to proton pumping. Usi...

متن کامل

The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction.

Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cyt...

متن کامل

pH-induced conformational transition in the soluble CuA domain of Paracoccus denitrificans cytochrome oxidase.

The pH-induced conformational transition in the CuA domain of subunit II of cytochrome oxidase of Paracoccus denitrificans (PdII) has been investigated using various spectroscopic and stopped-flow kinetic methods. UV-visible absorption and circular dichroism studies showed that an increase in pH from 6 to 10 leads to a conformation change with pK(a) = 8.2 associated with the CuA site of the pro...

متن کامل

Cytochrome c oxidase.

Within the past year, the structures of the cytochrome c oxidase from the soil bacterium Paracoccus denitrificans and of the metal centers of the cytochrome c oxidase from bovine heart mitochondria, both determined at 2.8 A resolution by X-ray crystallography, have been reported. The structures form a basis for understanding the mechanism of this redox-coupled transmembrane proton pump, which i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 43  شماره 

صفحات  -

تاریخ انتشار 2007